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A steady-state technique of heat-transfer measurement has been developed 
based on the method of Seban, Emery & Levy (1959) whereby energy is dissi- 
pated by the Joule effect in a thin metal sheet on the surface of a model. For the 
present application, use was made of very thin but mechanically resistant films 
of metal of very nearly constant thickness, obtained by a simple mirror-silvering 
technique. The present investigation was prompted by the desire to make very 
local measurements of heat transfer for application in regions where large varia- 
tions in convective heat flus and therefore in temperature could be expected. 

Comparison between theory and experiment has been made in the simple 
case of a flat plate with constant heat flux for which a rigorous computation 
could be made based on the theory of Chapman & Rubesin (1949). The model 
was so conceived that the heat losses were small enough to be neglected. There- 
fore no corrections, which are often inaccurate, were needed for the experimental 
results, contrary to what is generally done when using other techniques for 
heat-transfer measurements. The excellent agreement between theory and 
experiment gives complete confidence in the method. The theoretical analysis 
showed that the measurements are simply related to the results that could be 
obtained in the case of an isothermal surface, because of the constant ratio 
that exists between the corresponding heat-transfer coefficients. 

1. Introduction 
All the standard methods of heat-transfer measurement have their own advan- 

tages and disadvantages. There is, however, one common drawback to all of them 
which may appear in special applications, i.e. the difficulty of measuring very local 
heat-transfer rates. The problem presented itself to the author in an investiga- 
tion made on reattaching supersonic flows where available methods could not 
be used to detect the local effects on the heat-transfer rate of three-dimensional 
flow perturbations previously observed (Ginoux 1961). These flow perturbations 
exhibited wavelengths of the order of a few millimetres and therefore it was 
required to have heat meters whose dimensions were an order of magnitude 
smaller. For this reason it was decided to develop a particular steady-state 
technique of heat-transfer measurement, which would consist in dissipating 
heat uniformly by the Joule effect at  the surface of the models, in very thin 
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films of metal of constant thickness, the insulating backing material being itself 
of small thickness, so as to minimize transverse heat conduction in the models. 

The originality of the method lies more in the use and manufacture of ex- 
tremely thin films than in its principle. Indeed, the idea of dissipating heat 
uniformly at the surface of the model has already been used by Seban et al. 
(1959) in low-speed tests. They used nichrome ribbons 0.002 in. thick, glued to 
a flat surface. However, these ribbons were still too thick for the present investi- 
gation and in addition, difficulties were found in gluing them properly, especially 
on h.ollow models and on curved surfaces. In  the early part of the present study, 
thin films of constant thickness were formed by evaporation of metal under 
vacuum but the method was given up because of the fragility of the films and 
also because the process was extremely lengthy. Later a mirror-silvering tech - 
nique was used which appeared very satisfactory in all respects. 

As a first step in the study, it was decided to apply this technique to a simple 
type of flow, in order to submit it to a rigorous test. The present article deals 
with a description of the method and its application to the flow over a flat plate. 

The experimental investigation was made in one of the supersonic tunnels of 
the Training Centre for Experimental Aerodynamics (TCEA) in Rhode-Saint- 
Genhse, Belgium. 

2. Principle of the technique 
The heat flux per unit area and unit time (q)  is determined from the measured 

voltage and current and from the total area of the heating element. Temperatures 
are measured by thermocouples located at  the model surface for power-off 
(TwJ and power-on (T,) conditions. The heat-transfer coefficient is then com- 
puted from the following relationship 

where subscript q refers to constant heat flux. 
The method of obtaining thin films of metal is derived from standard tech- 

niques for silvering mirrors. It is extremely simple in its use. Models are immersed 
successively for a few minutes into solutions of stannous chloride and silver 
nitrate, respectively. By thoroughly cleaning the models, it  is easy to obtain a 
layer of metal having a thickness constant to within better than lo%, as can 
be checked electrically. By titration of the solutions, it  was found that the mean 
thickness was of the order of l p .  However, a direct computation of the thick- 
ness based on the surface dimensions, its total resistance and the resistivity 
of the bulk material gave a value which was quite evidently too small. Therefore, 
the resistivity of the film must be larger than assumed and consequently the 
efl'ective thickness of the fiIm for transverse heat conduction is expected to be 
much smaller than l p .  This is of course favourable in the application of the 
technique to local heat-transfer measurements. 

In  the present study, Araldite was used as the backing insulation and sur- 
prisingly strong films of silver were obtained inasmuch as sand paper was 
needed to remove them. The wall temperatures were limited to about 120 "I! in 
order to avoid warping of the models. Other insulating materials have to be 
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used for somewhat higher temperatures, Further description of the technique 
has been given by Ginoux (1963). 

3. Application to the flow around a wedge 
With a view to checking the accuracy of the technique, it was applied to the 

study of supersonic flow along a flat plate for which there was a rigorous solution 
to the laminar boundary-layer equations. The model configuration, shown in 
figure 1, was selected in order to match closely the theoretical conditions. It 
consists of a wedge of small apex angle (2a), followed by an afterbody AA‘BB’. 
The model is placed in a supersonic stream at zero angle of attack in order to 
minimize the losses by conduction inside the model, Heat is dissipated uniformly 
a t  the same rate on both the upper and lower surfaces of the model. 

Silver films 

FIGURE 1. Silver-plated wedge model in a supersonic stream. 

4. Theory 
Chapman & Rubesin (1949) found a rigorous solution for the laminar flow of a 

compressible fluid over a flat plate, in the case of a polynomial wall-temperature 
distribution. In  particular they obtained the following expression for the 
heat flux a t  the wall 

q = - Jk, T, C,(u,/v, x C ) ~  San(x /L)n  Yk( 0 )  (1) 

for a wall-temperature distribution given by 

T, = T,, + T, Can(x/L)n,  

where T,, is the adiabatic wall temperature, x the distance along the plate from 
its leading-edge, L a  characteristic length, and the subscript 00 refers to upstream 
conditions (figure 1). C is a constant based on a mean value of the wall tempera- 
ture, F,, whereas C, is a variable coe6cient. They are defined by 

where S is Sutherland’s constant. I’L(0) is the value of the function Y; computed 
at the wall, v the kinematic viscosity, k the thermal conductivity and u the 
‘undisturbed’ mean flow. 

In the present study, the increase of the wall temperature above the adiabatic 
value due to heating was limited for practical reasons to about 80°F. In these 
conditions, it  is easy to see that C, = C = const. to within 1 yo. Therefore, if we 
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want to consider the case of constant heat flux (i.e. q = const,.), we see from rela- 
tionship (1) that we have to select n = 4. The corresponding wall-temperature 
distribution is 

where the coefficient at is given by 

From (2) and (3), we can compute the heat-transfer coeilieient a t  constant heat 
flux h, = - &k* Y i ( 0 )  (Cu,/v,z)6 (4) u 

Chapman & Rubesin gave the value of YA( 0 )  for n = 0,1,2,  . . . and for a Prandtl 
number v = 0.72. Although these values may be interpolated for intermediate 
values ofn, as suggested by Curle (1962), it was found more accurate to compute 
directly the coefficient Yi(0) and at the same time evaluate the influence of the 
Prandtl number. The numerical integration method of Runge-Hutta was 
used in the calculations. Initial values were given by an exact asymptotic solu- 
tion for the boundary-layer equations which was easily determined. The steps 
for the integration were selected small enough to give correct values of Fi(0) 
ho within 1 %. For a Prandtl number of 0.72, it was found that 

I’i(0) = -0.82, 

while a linear interpolation between Yh(0) and Yi(O), given by Chapman & 
Rubesin, led to a value of -0.785, i.e. smaller by 4%. Values of YB(0) obtained 
for two other values of the Prandtl number are indicated in table 1. 

In  terms of the Nusselt number, (4) can be written as 

Nu/JRez = JC/2*44. ( 5 )  

5. Comparison between measurements at constant q and Tw, 
For the flow over an isothermal flat plate, Chapman & Eubesin found that 

(6) h T - _ -  - ~ k m ( u m C / ~ ’ m x ) t  yh(o), 

where subscript T refers to a constant wall temperature. 
Dividing (4) by (6), we find that 

h,/hT = Yh(O)/Yi(O) = G = const., ( 7 )  

i.e, the ratio of the heat-transfer coefficients for constant heat flux and for con- 
stant temperature is a constant independent of the Reynolds number and 
Mach number. Table 1 shows that it is also independent of the Prandtl number 
in the range 0.5 < v < 1.0. This property suggests that the experimental results 
from the constant-heat-flux technique are simply related to results that could 
be obtained with the more familiar isothermal method, although it remains 
to be verified in the presence of a pressure gradient. 

The numerical value of G has been evaluated by taking the following approxi- 
mate expression (Chapman & Rubesin 1949) 

Y,!,(O) = - if’’(0) 0-5 = - 0.664&, 
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where f is the Blasius function, valid to within 1 % for 0.6 < (T < 1.0. The results 
are given in table 1. They show that G is independent of (T within the accuracy 
of the computation. It is noted that C is very nearly equal to 5 for 5 = 0.72. This 
was found first and suggested varying the Prandtl number to the author. 

CT 0.50 0.7 2 1.00 

- Y p )  0.722 0-820 0.918 
G 0-730 0.721 0.723 

TABLE 1 

6. Heat conduction inside the model 
The following calculation of the temperature distribution inside an infinite 

wedge provides a useful measure of heat losses. As shown by relationship ( 2 ) ,  
the wall temperature varies along the surface of the wedge. Therefore, one may 
expect surface heat losses due to conduction through the model. They can be 
easily evaluated if one assumes a priori that their effect on the wall-temperature 
distribution may be neglected so that the boundary condition a t  the wall is 
given by equation ( 2 ) .  

2 a  e 

FIGURE 2. Polar co-ordinates for the computation of heat conduction 
inside tho wedge. 

Using the polar co-ordinates shown in figure 3 and denoting the apex angle 
of the wedge by 2a, one has to solve the equation for steady temperature dis- 
tribution, in polar co-ordinates, namely 

with the boundary condition 

T = T , ,  + T,ag(x/L)a at 8 = a. 

It can easily be seen that the solution is 

T = T,,+ T,a + z  ( x)bcos @3/cos &a. 

The heat flux through the surface of the model per unit time and unit area is then 

qa = - k,(aT/X ae),,,, 
where k, is the coefficient of thermal conductivity of the Araldite 

( k ,  = 0.11 B.Th.U./ft. hr "F for Araldite type D). 
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qa is positive when heat goes out of the model. Thus, a good estimate of the ratio 
of the heat losses to the heat generated at the surface is given by 

7. Model and test conditions 
The model was cast with Araldite after correctly positioning the copper- 

constantan thermocouples inside the mould, then machined in order to  bring 
the thermocouple junctions flush with the surface, and finally silver plated. The 
thermocouple wires are run spanwise inside the model to minimize the heat losses. 
Electrodes are installed along the sides of the model to supply the electric 
power independently to the two surfaces OA and OB (figure 1) of the wedge and 
to the surfaces AA' and BB' of the afterbody. Good electrical contact between 
the electrodes and the silver layers is ensured by additional silver paint. 

The lengths OA and AA' of the wedge and of the afterbody were both equal 
to 6in. and the model span was 7.5 in. Although the wedge angle was rather small 
(10deg.) a fairly sharp leading edge could easily be obtained with Araldite. 
The thickness of the silver films was equal to lp with local variations smaller 
than +loyo. 

The model was mounted on a sting and tested in the TCEA 1Gin. x 1Gin. 
continuous supersonic wind tunnel S- 1 a t  a free-stream Mach number No 
(figure 1) of 2.31 and a t  absolute stagnation pressures of 300 and 100mm Hg, 
which correspond to free-stream Reynolds numbers based on a length of 1 ft. 
of 106 and 0.5 x 106 respectively. Steady-state conditions were achieved for both 
power-off and power-on conditions, after approximately 1 hr of running time. 
The stagnation temperature in the tunnel was maintained a t  a value close to 
ambient temperature. The absolute humidity in the tunnel was kept below 
10-4. 

8. Results and conclusions 
Typical results are presented and compared with the theory in figure 3, 

where the heat-transfer coefficient h and the recovery factor r are plotted against 
the distance x from the leading edge and also in figure 4 which gives the quantity 
NJJR,, 21s x. Squared symbols correspond to a stagnation pressure of 100 mm Hg 
and circular symbols to a pressure of 300mmHg. The theoretical values of h 
and N,/JR,, are shown by solid lines and given by relationships (4) and (5). 
The theoretical value of r is equal to d, i.e. 0.848 for = 0.72. Schlieren pictures 
indicated that a laminar boundary layer existed in all the tests. 

Figures 3 and 4 show excellent agreement between the theory and the test 
results. The experimental data are uncorrected. Indeed, it can be seen from (8) 
that for the present test conditions, the ratio qa/q was smaller than 1% for x 
larger than +in., which means that the heat losses by conduction through the 
Araldite were negligible compared to the heat dissipated at the surface of the 
model, except near the leading edge. Relation (8) was obtained by assuming 
an infinite wedge, although this was not the case in the experiments. The effects 
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of the finite length of the model was therefore examined experimentally by 
comparing the measurements made on the surfaces OA and OB of the model 
(figure l), with the surfaces AA' and BB' of the afterbody of the model heated or 
or unheated. No difference was observed except close to A and B as expected. 

8 0  

x (in.) 

0 1 2 3 4 5 
z (in.) 

FIGURE 3. Recovery factor and heat-transfer coefficient vus x. Squared symbols for 
stagnation pressure of 100 mm Hg and circular ones for 200 mm Hg. Flags show tests 
on resilvered model. Unflagged open squares : 5 W; filled squares : 10 W. 
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It was thus concluded that the heat losses were negligible along most of the 
surface of the wedge. 

Another cause of experimental error is the existence of a non-uniform heat 
flux. This can be caused either by a variable thickness of the heating elements or 
by local changes in the electric resistance produced by a variable wall tempera- 
ture. On the one hand, the thickness of the silver films is never perfectly constant 

0.5 

2 3 4 5 

x (in.) 

FIGURE 4. Variation of Nu/ ,/Rex with x. Same symbols as in figure 3. 

over the whole surface of the model; in the present tests local variations of 
about 10 yo were observed. However, it  seems that these variations have a small 
effect on the results as no significant changes were observed in the measurements 
after resilvering the model several times, although the imperfections in the 
films were differently located each time. Flagged symbols are used in figures 3 
and 4 to represent different tests on resilvered models. On the other hand, the 
variationsin thewall temperature were purposely kept small in the tests; thus, the 
electric resistance and consequently the heat flux were not much affected. This 
was verified experimentally by dissipating two different amounts of power in 
the heating elements, keeping other conditions unchanged. As seen from figure 3, 
no systematic difference was observed in the heat-transfer coefficients; unflagged 
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open squares correspond to a power of 5 W dissipated in each surface of the wedge, 
while filled squares correspond to a power of 10 W. 

The mirror-silvering technique allows one to obtain a very thin mechanically 
resistant film of nearly constant thickness which permits accurate measurements 
of local heat-transfer rate using Joule heating. Because of the very small thick- 
ness of the metallic films, the parasitic heat losses are extremely small and there- 
fore the technique can be used in regions where large surface temperature 
gradients exist. Of course, the backing material plays an important part in 
heat losses and it should necessarily have a very low thermal conductivity. 

The research was sponsored by the Air Force Office of Scientific Research, 
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